≡ Menu

Irving Geis and His Paintings of Proteins

myoglobin crystal structure

“Crystal structure of myoglobin (1961)” from the Irving Geis Collection. Rights owned and administered by the Howard Hughes Medical Institute. Reproduction by permission only.

The image above was a painting of myoglobin, the first protein structure solved by X-ray crystallography. The painting was created by Irving Geis for a Scientific American article “The Three Dimensional Structure of a Protein Molecule” by John Kendrew, published in December l961. John Kendrew and his colleagues solved the myoglobin structure in l958.

Geis Portrait

Irving Geis (1908-1997). Photo: Sandy Geis.

Nowadays, one can easily create an image of a protein structure with the aid of a computer and molecular visualization software. In 1961, however, everything had to be done by hand. Creating an image of a protein structure required not only outstanding artistic skills of visualizing complicated 3D structures, but also extraordinary patience. Originally trained as an architect at Georgia Institute of Technology and receiving a Bachelor of Fine Arts from University of Pennsylvania, Geis had all the skills and knowledge to visualize the 3D structures of proteins.

Geis created this painting by first photographing the physical models and then by creating voluminous sketches and studies before painting the finished version [1]. A lot of refinements were made during the sketch step based on the feedback from John Kendrew, as shown by the image below. The final painting took 6 months to complete [2].

Myoglobin painting draft

“A draft image of the 1961 myoglobin” from the Irving Geis Collection. Comments on the image were made by Irving Geis and John Kendrew. Rights owned and administered by the Howard Hughes Medical Institute. Reproduction by permission only.

I tried to mimic Geis’ myoglobin image by using UCSF Chimera and Maxon Cinema 4D. It took me quite some time but the result is far inferior to the original masterpiece. The heme group seems OK, but the alpha helices are hard to recognize even though I used the same color scheme as Geis’ painting, depth cueing effect, and some lighting techniques in Cinema 4D. In addition, I couldn’t add hydrogen atoms except those in hydrogen bonds in my version, as the model would become overwhelmingly complicated to be meaningful at all. On the other hand, Geis’s painting clearly visualizes the main structural features (the heme group and alpha helices) while giving an overall sense of the structural complexity of the myoglobin protein.

Computer generated myoglobin

My attempt to mimic Geis’ painting using UCSF Chimera and Maxon Cinema 4D (PDB ID: 1MBN). The alpha helices are difficult to recognize because they overlap with the atoms in the back.

To achieve this, Geis used a process he called “selected lying” [2-4], in which he made small adjustments to avoid structural overlapping. He might distort the protein a little bit here and there, or he might use slightly different viewing angles or perspectives for different parts of the protein. In the end, this process resulted in a structure that was not so different from the real structure, but much easier to understand on a flat paper. A computer, on the other hand, draws everything based on the given coordinates and the image it produces is usually not very comprehensible, especially for complicated protein structures.

Lysozyme crystal structure

“Crystal structure of lysozyme (1966)” from the Irving Geis Collection. Rights owned and administered by the Howard Hughes Medical Institute. Reproduction by permission only.

Besides his excellence in visualizing complicated 3D structures, what makes Geis’ paintings special is his belief that “his job was not to draw a protein exactly as it was, but to show how it worked”[3]. Often Geis would add additional layers of information on top of protein structures, making protein functions and mechanisms understandable. This is the reason why his protein paintings are still appreciated and used in some textbooks, even today.

Colors are very important to Geis’ painting. He carefully chose the proper colors to illustrate the inner workings of proteins. “Color is a language”, he said, “and as with any other language, one mustn’t babble!” [3]

Cytochrome-C

“Cytochrome C (1989)” from the Irving Geis Collection. Rights owned and administered by the Howard Hughes Medical Institute. Reproduction by permission only.

Geis had worked with many scientists in his career. Among them, Dr. Richard Dickerson was his long time collaborator and friend. The two co-authored several books, including The Structure and Action of Proteins (1969), Hemoglobin (1983), and a chemistry textbook: Chemistry, Matter and the Universe (1976). The Structure and Action of Proteins became classic after published and inspired a generation of young biochemists.

Irving Geis was born in 1908 in New York City and died in 1997. He was 88 and lived in Manhattan.

Geis with myoglobin painting

“Irving Geis and his work-in-progress 1961 myoglobin painting” from the Irving Geis Collection. Rights owned and administered by the Howard Hughes Medical Institute. Reproduction by permission only.

Acknowledgements

I would like to thank Sandy Geis for reviewing this article and generously providing many reference materials about Mr. Geis’s works. I would also like to thank Howard Hughes Medical Institute for granting permissions to use the above images from the Irving Geis Collection.

References

[1] S. de Chadarevian, Models and the Making of Molecular Biology, in Models: The Third Demension of Science (eds. S. de Chadarevian and N. Hopwood) 339-368 (Stanford Univeristy Press, Stanford, California, USA, 2004)

[2] B. P. Gaber and D. S. Goodsell, Irving Geis: Dean of Molecular Illustration. Journal of Molecular Graphics and Modeling 15, 57-59 (1997)

[3] R. E. Dickerson, Irving Geis, Molecular artist, 1908-1997. Protein Science 6, 2483-2484 (1997)

[4] D. S. Goodsell and G. T. Johnson, Filling in the Gaps: Artistic License in Education and Outreach. PLoS Biology 5, 2759-2762 (2007)

4 comments… add one

  • sandy geis March 7, 2014, 9:45 pm

    Your article featuring the work of my father, Irving Geis, was a wonderful tribute.
    It captured the essence of his creative spirit and so aptly conveyed his consistent goal to artistically demonstrate how molecules behave, so that students as well as the vast scientific community could be enlightened, as well.

  • Yan Liang March 8, 2014, 1:28 am

    Thank you so much, Sandy! Mr. Geis’ paintings have always been inspirational for my work.

  • Bill Benzon April 18, 2014, 12:08 pm

    Some years ago I had the pleasure of interviewing Mr. Geis while working on a book with Richard Friedhoff, Visualization: The Second Computer Revolution (Abrams 1987). He was generous enough to allow us to include some images of his work in the book. I also devoted a section to him in an article I wrote on visual thinking. Here’s a paragraph from that article:

    “In a personal interview, Geis indicated that, in studying a molecule’s structure, he uses an exercise derived from his training as an architect. Instead of taking an imaginary walk through a building, the architectural exercise, he takes an imaginary walk through the molecule. This allows him to visualize the molecule from many points of view and to develop a kinesthetic sense, in addition to a visual sense, of the molecule’s structure. Geis finds this kinesthetic sense so important that he has entertained the idea of building a huge model of a molecule, one large enough that people could enter it and move around, thereby gaining insight into its structure. Geis has pointed out that biochemists, as well as illustrators, must do this kind of thinking. To understand a molecule’s functional structure biochemists will imagine various sight lines through the image they are examining. If they have a three-dimensional image on a CRT, they can direct the computer to display the molecule from various orientations. It is not enough to understand the molecule’s shape from one point of view. In order intuitively to understand it’s three-dimensional shape one must be able to visualize the molecule from several points of view.”

    William Benzon. Visual Thinking. Allen Kent and James G. Williams, Eds. Encyclopedia of Computer Science and Technology. Volume 23, Supplement 8. New York; Basel: Marcel Dekker, Inc. (1990) 411-427.

    • Yan Liang April 18, 2014, 1:01 pm

      Thanks for the nice comment, Bill. I will try to find your article.

Leave a Comment